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1. Mathematical setting

We start our discussion with a simple framework covering all models
encountered in this manuscript; a more general setting and some theoreti-
cal comments regarding sloppiness are presented later, in Section 10 herein.
Specifically, we consider multivariable vector functions x(t|p) ∈ RD, with D
finite but arbitrary. Typically, x = [x1, . . . , xD] is only known implicitly as
the solution to some problem, e.g. to an initial-value ODE problem with
t > 0 representing time and p = (p1, . . . , pM) ∈ Θ ⊂ RM model param-
eters. Also typically, one monitors not the entire trajectory χ(p), for all
t > 0, but merely a number of functionals on it, f1, . . . , fN . We call the
N−tuple f(p) = [f1(χ(p)), . . . , fN(χ(p))] ∈ RN model output or response.
In our discussion, these functionals concretely correspond to a state variable
xd observed at specific preset times, i.e. f(p) = [xd(t1), . . . , xd(tN)] for cer-
tain times t1, . . . , tN . As p ranges over Θ, f(p) traces out a (generically)
M−dimensional manifold called the model manifold M. In general, we will
understand that manifold as

M = graph(f) = {(p, f(p)) |p ∈ Θ} ⊂ RM+N .
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The projection ofM on RM ×{0}N is injective and yields the input domain
Θ. The projection on {0}M × RN , on the other hand, is not guaranteed
to be injective even in the important case N > M ; we consider such a non-
invertible model in the main text. During our discussion,M will be endowed
with a metric suggested by the application (in a sense by us, the observers,
and our measurement capabilities), which will turn it into a Riemannian
manifold. For the time being, we postpone a discussion of this important
subject to a later section, where we discuss diffusion maps (DMAPS) and
their relation to the Laplace-Beltrami operator.

2. Toy example: singular perturbation

The system discussed in the main text is a supremely basic prototype for
singularly perturbed dynamical systems,

dx

dt
= 2− x− y, (1)

dy

dt
=

1

ε
(x− y). (2)

For ε � 1, trajectories are attracted to the slow manifold which, at leading
order, has the form y = x. In our numerical experiments, we kept the
initial condition for the slow variable at x0 = −1, fixed t1 = 0.5, t2 = 1.0
and t3 = 1.5 and sampled the input space (ε, y0) for small parameter values
(10−3 ≤ ε ≤ 1) and fast variable initializations (3 ≤ y0 ≤ 5). The map from
input to output space assumes the form

[3, 5]× [10−3, 1] ⊃ Θ 3 (ε, y0) 7→ f(ε, y0) = [y(t1), y(t2), y(t3)] ∈ R3, (3)

with a closed-form expression easily derived by quadrature on (2).
The 3× 2 Jacobian of the transformation is

Df = J(ε, y0, t) =


∂y(t1)
∂ε

∂y(t1)
∂y0

∂y(t2)
∂ε

∂y(t2)
∂y0

∂y(t3)
∂ε

∂y(t3)
∂y0

 , (4)

and its singular value decomposition (SVD) yields the transformation rank
and, eventually, the model manifold dimensionality. In Fig. 1, we have plot-
ted the singular values of the transformation against ε for the trajectory
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initialized at (x0, y0) = (−1, 4). At larger values of ε, the transformation
has rank two (evidenced by two O(1) singular values) and consequently the
model manifold is, in principle, two-dimensional. As we decrease ε, how-
ever (ε < 10−1), the smallest singular value clearly approaches zero. One
may impose a threshold for that value, below which the matrix is effectively
rank deficient and the model manifold one-dimensional. For even smaller
ε−values, close to the boundary ε = 0, the model manifold becomes effec-
tively zero-dimensional as also evidenced by our Diffusion Maps calculations.

10
-4

10
-2

10
0

10
-6

10
-4

10
-2

10
0

10
2

1

2

Figure 1: Singular values σ of the transformation map from the parameter space to the
model response manifold for the singular perturbation prototype (2) and the trajectory
starting at the initial condition (x0, y0) = (−1, 4). Model output y is sampled at the time
instants t1 = 0.5, t2 = 1.0 and t3 = 1.5.

3. Spectral geometry, diffusion maps, and multi-criteria optimiza-
tion

3.1. The Laplace–Beltrami operator and diffusion maps

A Riemannian manifold (Θ, g) is a smooth m-dimensional manifold Θ ⊆
Rn endowed with a metric g. We can regard the metric as a device that allows
us to measure distances and angles on Θ. At each point of Θ, the Riemannian
metric g can be represented as a symmetric and positive definite matrix. If u
is a smooth real-valued function on Θ, the Laplace–Beltrami operator ∆ [8]
is a linear operator given, in local coordinates (z1, . . . , zm), by the formula

∆u =
1√

det g

m∑
i=1

m∑
j=1

∂

∂zi

(√
det g (g−1)ij

∂u

∂zj

)
.
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Here, det g is the determinant of the matrix associated with the Riemannian
metric and g−1 is the corresponding inverse matrix. Intuitively, the eigen-
functions of the Laplace–Beltrami operator determine how heat propagates
on the manifold Θ.

Let SN = {x1, . . . , xN} ⊂ Rn be a set of points sampled from an arbitrary
probability distribution on the manifold Θ. The computational complexity of
traditional approximation schemes for the Laplace–Beltrami operator, such
as finite differences or finite elements, scales exponentially in the dimension
n. By contrast, the diffusion maps method (DMAPS; to be discussed below)
is a data-driven approximation of ∆ with a computational complexity that
scales quadratically in the number of samples N .

To approximate ∆ in the DMAPS sense, fix a scale ε > 0 and consider
the affinity matrix A ∈ RN×N with entries

Aij = exp

{
−‖xi − xj‖

2

2ε

}
.

For each i = 1, . . . , N , set further qi =
∑

j Aij and introduce the matrix

W ∈ RN×N with entries

Wij =
Aij
qi qj

.

We define the (random walk) graph Laplacian L as [3]

L = I −D−1W,

where I ∈ RN×N is the identity matrix and D ∈ RN×N is the diagonal matrix
with diagonal entries

Dii =
∑
j

Wij.

Note that L is determined by ε and the set of point-samples SN . Let us
now represent the smooth function u : Θ → R by a vector U ∈ RN with
components Ui = u(xi), for i = 1, . . . , N . It is known [5] that

lim
ε→0

ε−1 lim
N→∞

∑
j

LijUj = 1
2
∆u(xi).

More precisely, it can be shown [9] that the choice

ε = C N
−2

6+m , (5)
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with C > 0 a constant depending on the geometry of M but not on N , leads
to the minimal error bound

ε−1
∑
j

LijUj = 1
2
∆u(xi) +O(N−

2
m+6 ) as N →∞. (6)

For example, for a 2D manifold (m = 2), (5)–(6) establish that the error
decays slowly as N−1/4.

Let ψ0, ψ1, ψ2, . . . be the eigenfunctions of ∆ corresponding to the eigen-
values 0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . < +∞ and let d ≥ m. The diffusion map
Ψε : Rn → Rd, defined by Ψε = (eλ1εψ1, . . . , e

λdεψd), is used for dimensionality
reduction in manifold learning. The leading eigenfunction ψ0 is not included
in the definition of Ψε, because it is always a constant function and carries
no information on (Θ, g).

In practice, we calculate the spectral decomposition of the Laplace–Beltrami
operator ∆ by the eigenvalues and eigenvectors of the graph Laplacian L.
However, in cases in which the dimensionality of the problem is sufficiently
low, using the finite element method [2] is faster and more accurate. This ad-
ditional accuracy is crucial, if we are interested in computing a large number
of eigenfunctions. To demonstrate the method, we consider the simple exam-
ple of a rectangle, Θ = [0, 1]× [0, `] ⊂ R2, endowed with the Euclidean met-
ric. In Fig. 2, we show the first few eigenfunctions of the Laplace–Beltrami
operator, computed using both diffusion maps and a high-accuracy finite el-
ement method for fixed aspect ratio 1/` = 2. The exact spectral decomposi-
tion is given by the family of eigenfunctions ψij(x, y) = cos(iπx) cos(jπy/`)
and eigenvalues λij = π2(i2 + j2/`2), for i, j = 0, 1, 2, . . . . On one hand,
the spectral decomposition of the graph Laplacian was computed using a
set of N = 104 points, sampled uniformly from Θ, with ε = 10−1. On
the other hand, the corresponding spectral decomposition of the Laplace-
Beltrami operator was computed using the FEniCS finite element library [6]
with quadratic Lagrange elements on an adaptively refined mesh.

3.2. Interpretation in terms of continuum mechanics

Let Θ andM be two smooth manifolds. Given a smooth map f : Θ→M,
we consider the deformation gradient, given by the Jacobian Df , and the
associated Green deformation tensor [7] (also known as the right Cauchy–
Green tensor), defined by DfTDf . The deformation tensor can be regarded
as a tool quantifying the change in f(Θ) ⊆M that results from a change in
Θ. We elaborate on this idea in what follows.
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Figure 2: Comparison of some eigenfunctions of the Laplace–Beltrami operator for a
rectangle with aspect ratio 2. First column shows eigenfunctions obtained by applying
DMAPS on 104 points sampled uniformly and with ε = 10−1. Second Column shows the
corresponding eigenfunctions obtained by the finite element method, using an adaptive
scheme with Lagrange elements of degree 2.
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For the sake of concreteness, we look at a particular example: the analyt-
ically solvable, linear, singular perturbation example studied in the paper,

ẋ = 2− x− y,
εẏ = x− y,
x(0) = −1,

y(0) = y0.

(7)

Using the solution of (7) evaluated at t1 = 1/2, t2 = 1, and t3 = 3/2, we
obtain a diffeomorphism f : Θ→M given by

(ε, y0) 7→ f(ε, y0) = [y(t1|ε, y0), y(t2|ε, y0), x(t3|ε, y0)].

Here, Θ = [3, 5] × [0.00225, 0.1] ⊂ R2 and M = f(Θ) ⊂ R3. In our cur-
rent context, the manifold Θ represents inputs for the transformation f and,
correspondingly, M will be the manifold of outputs of f . A perturbation of
an input x in a neighborhood V ⊆ Θ by a tangent vector ∆x ∈ TxV , with
‖∆x‖ = h > 0, results in a change in the output of size

‖f(x+∆x)−f(x)‖2 = ‖Df(x) ∆x‖2+o(ε) = (∆x)T (DfTDϕ) ∆x+o(h), as h ↓ 0.

Therefore, we can endow Θ with the metric determined by the deformation
tensor g = DfTDf . Indeed, g measures how close to each other are the
images, under f , of the points x = (ε, y0) and x+∆x = (ε+∆ε, y0 +∆y0). It
is then natural to study the eigenfunctions of the Laplace–Beltrami operator
on (Θ, g). These eigenfunctions yield another parametrization [1] of Θ that
reflects the sensitivity of the outputs to changes in the inputs. Some of the
relevant eigenfunctions are plotted in Fig. 3.

3.3. Thoughts on multi-criteria optimization

The curve γ : [0, 1] → Θ depicted (dashed) in Fig. 4 is a level set of
the first non-constant eigenfunction ψ1 of the Laplace–Beltrami operator on
(Θ, g), i.e.

ψ1(γ(t)) = c, for some constant c ∈ R and all t ∈ [0, 1].

The image of γ under ψ15, which is not a harmonic of ψ1 (cf. Fig. 3) is increas-
ing monotonically function along the curve; indeed, dψ15(γ(t))/dt neither
changes sign nor vanishes for any t ∈ [0, 1]. As a result, we can parameterize
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Figure 3: Some eigenfunctions of the singularly perturbed problem. The eigenfunctions ψ4

and ψ10 (top) are harmonics of the first non-constant eigenfunction ψ1 (also top), whereas
the rest (bottom) are not.
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γ using the values of ψ15. The fact that level sets of ψ1 can be parameter-
ized using another eigenfunction ψk has obvious applications to multi-criteria
optimization [4]. In particular, if our optimization criterion follows a lexi-
cographic ordering, in which we first seek an optimal level set γ of ψ1, the
parametrization of γ in terms of ψk is a natural way to subsequently seek an
optimal point on γ.
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Figure 4: Parameterization of the first non-constant eigenfunction of the singularly per-
turbed problem using another eigenfunction. Left: a level set of ψ1 (dashed) overimposed
on a heatmap of ψ1, the first non-constant eigenfunction. Middle: same but with a
heatmap of ψ15, the first eigenfunction that is not a higher harmonic of ψ1. Plainly,
ψ15 is monotonic on that level set. Right: a concatenation of the top panels. The gray
heatmap covers the entire panel and represents ψ1, whereas the colored one is confined in
a neighborhood of the level set and represents ψ15.
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4. Regular perturbation

The system under investigation is ẋ = εx3 − x, with ε � 1 a small
parameter and x the system state. Using that this differential equation is
separable and restricting ourselves to x ≥ 0, we can write the analytical
solution

x(t|ε, x0) =

(
ε+ e2t

(
1

x2
0

− ε
))−1/2

. (8)

We are interested in the behavior of the system in the adiabatic limit ε→ 0.
The limiting solution can be found simply by omitting the cubic term from
the differential equation, giving us

lim
ε→0

x(t) = x0e
−t. (9)

The key distinction between this system and the singularly perturbed model
presented above is that the initial conditions does influence the trajectories,
even in the limiting case of small ε. Varying both ε and x0 for large ε−values,
one obtains the model response 8 that depends non-trivially on both ε and x0.
For small values of ε, on the other hand, trajectories converge to the limiting
solution (9), where ε does not affect the model response. This is precisely
what we see in the model manifold depicted in Fig. 5 of the main text. For
large values of ε, the model manifold is two dimensional and variations in
both x0 and ε affect the model response. At smaller values of ε, the model
manifold converges to a 1D object parameterized by x0. The exact form of
that object is simply the ray f(x0) = x0(e−t1 , e−t2 , e−t3), with x0 > 0, bearing
no dependence on ε.

To create Fig. 5 in the paper, we fixed t1 = 0.25, t2 = 1.0 and t3 = 1.75
and set the model response to f(x0, ε) = [x(t1|x0, ε), x(t2|x0, ε), x(t3|x0, ε)] ∈
R3, with x(·|x0, ε) given by (8). We then drew 2500 points from the rectangle
x0 ∈ [1.0, 2.5] and log(ε) ∈ [−3,−1], uniformly in these two parameters, and
performed DMAPS on the input–output combinations with ε = 5.0 as kernel
scale. Coloring parameter space by the resulting φ1 values gives Fig. 5 in
the paper, showing that φ1 “discovers” the regularly perturbed nature of the
problem in a data-driven manner.
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5. The ABC system

In this section, we identify the singularly perturbed regime for the dy-
namics associated with the reaction scheme

A
k1−−⇀↽−−
k−1

B
k2−→ C.

As we will see, the dynamics in that regime is driven by a single effective
parameter keff .

5.1. Exact solution

The evolution of the molar concentrations is dictated by the linear ODEs

d

dt

 A
B
C

 =

 −k1 k−1 0
k1 −(k−1 + k2) 0
0 k2 0

 A
B
C

 , subject to

 A(0)
B(0)
C(0)

 =

 A0

B0

C0

 .
This system has the explicit solution A(t)

B(t)
C(t)

 =
λ+A0 + (λ+ + k2)B0

∆λ

 −(1 + λ−/k2)
λ−/k2

1

 eλ−t

+
λ−A0 + (λ− + k2)B0

∆λ

 −(1 + λ+/k2)
λ+/k2

1

 eλ+t

+(A0 +B0 + C0)

 0
0
1

 ,
(10)

where ∆λ = λ+ − λ− > 0 is the difference between the nonzero eigenvalues

λ± =
1

2

[
−(k−1 + k1 + k2)±

√
(k−1 + k1 + k2)2 − 4k1k2

]
< 0. (11)

Among them, λ− controls the fast time scale (transient dynamics) and λ+

the rate of approach to the steady state (A∗, B∗, C∗) = (0, 0, A0 + B0 + C0)
(slow dynamics). The third eigenvalue is identically zero and associated with
the conservation law A(t) + B(t) + C(t) = A0 + B0 + C0. For our purposes,
we assume a fixed initial state (A0, B0, C0) = (1, 0, 0) (in arbitrary units)
and variable reaction rates p = (k−1, k1, k2). Observing the system takes
the form of monitoring the product concentration at preset times, f(p) =
[C(t1|p), . . . , C(t5|p)]. Here, the times t1, . . . , t5 form a uniform grid on the
interval [−0.5/λ+ , −5/λ+], chosen to resolve the slow dynamics.
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5.2. Singularly perturbed regime
Rearranging terms from slowest to fastest in (10) yields

C(t|p) = 1 +
λ−
∆λ

eλ+t

(
1 +

λ+

λ−
erλ+t

)
, with r =

∆λ

|λ+|
> 0. (12)

To resolve the slow dynamics, we select t1 = α/|λ+| for α ≈ 0.5. In the
presence of time scale disparity, the fast component should be negligible by
that time already, which necessitates that |λ+/λ−|e−αr � 1. This order re-
lation determines the asymptotic regime in parameter space. Since the ratio
|λ+/λ−| depends only algebraically on p, time scale separation must arise
from the exponential term for all r > r∗ with αr∗ � 1. As an indication, the
value r∗ = 6 reduces the exponential term to approximately 0.05.

To identify the asymptotic regime explicitly, we work with the compact-
ification

ε =
1

4

[
1−

(
r

r + 2

)2
]

=
k1k2

(k−1 + k1 + k2)2
< ε∗ =

1

4

[
1−

(
r∗

r∗ + 2

)2
]
,

(13)
where we have used (11) to express r in terms of the kinetic parameters. The
composite parameter ε decreases with r from 1/4 to zero, hence timescale
disparity exists for ε < ε∗ � 1: ε acts as a small parameter. As an indica-
tion, the value r∗ = 6 above yields ε∗ ≈ 0.11. To understand the quadratic
curve (13) bounding the singularly perturbed regime, we introduce the trans-
formation[
κ1

κ2

]
=

1√
2

[
1 +
√

1− 4ε∗ −1 +
√

1− 4ε∗
−1 +

√
1− 4ε∗ 1 +

√
1− 4ε∗

] [
k1/k−1 − 2ε∗/(1− 4ε∗)
k2/k−1 − 2ε∗/(1− 4ε∗)

]
,

which factorizes (13) as κ1κ2 < 2ε∗/(1 − 4ε∗). In the (κ1, κ2)−plane, the
asymptotic regime is bounded by two hyperbolas in the first and third quad-
rants. Since the κ1− and κ2−axes align with the axes in the (k1/k−1, k2/k−1)
plane, at leading order, the regime ε∗ ↓ 0 becomes the narrow sliver shown
in Fig. 5.

5.3. Effective parameter
By construction, data generated by parameter values in the asymptotic

regime are well-described by the slow component alone, whose decay rate is

|λ+| =
1−
√

1− 4ε

2
(k−1 + k1 + k2) ∼ k1k2

k−1 + k1 + k2

= keff .
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Figure 5: The region on the (k1/k−1 , k2/k−1)−plane within which there is timescale
separation.

For parameter values in that regime, the observable effectively reads (cf. (12))

C(t|p) = 1− e−keff t, since
λ+

λ−
e−rλ+t � 1 and

λ−
∆λ

= −1 +
√

1− 4ε

2
√

1− 4ε
∼ −1.

This is the formula we based our discussion in the main text on, together
with its domain of applicability, cf. (13). This leading order result shows the
observable to depend solely on the decay rate keff in the singularly perturbed
regime. That regime is foliated by (subsets of) the level sets of keff , with the
model response remaining largely constant on each such surface.

It is interesting to note that, next to sloppiness, the setup above also ex-
hibits structural non-identifiability. Indeed, the observable only depends on
the two parameter combinations λ±, see the exact formula (12). It is impor-
tant to understand that this effect is distinct from time scale disparity and
thus not limited to the singularly perturbed regime. This further entails that
the parameter space is foliated by curves along which λ± remain constant,
with all points on any such curve yielding identical model responses. Since
keff is merely another name for λ+, each surface keff = const. is itself foliated
by these curves. In other words, the curves of identical model response (con-
stant λ±) foliate surfaces of leading-order identical model response (constant
λ+) which, in turn, foliate the singularly perturbed regime. We remark once
again that sloppiness and non-identifialibity are pertinent to both the sys-
tem and the monitoring protocol employed. Allowing B0 > 0 in the initial
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condition or observing A(t) and/or B(t), next to C(t), suffices to lift the
non-identifiability.

6. The Michaelis–Menten–Henri system

We consider the prototypical chemical pathway [14, 17]

S + E
k1−−⇀↽−−
k−1

C
k2−→ P + E,

modeling the two-step conversion of a substrate S into product P through
the mediation of an enzyme E. The constituent concentrations evolve under

S ′ = −k1ES + k−1C,
C ′ = k1ES − (k−1 + k2)C,
E ′ = −k1ES + (k−1 + k2)C,
P ′ = k2C,

(14)

supplemented by the initial concentrations S0, E0, C0 and P0. This system
has two exact conservation laws expressing mass balance,

S + C + P = S0 + C0 + P0 =: ST and C + E = C0 + E0 =: ET .

Typically, one uses these to eliminate the last two ODEs, thus obtaining

S ′ = −k1(ET − C)S + k−1C,
C ′ = k1(ET − C)S − (k−1 + k2)C.

(15)

This is the classical Michaelis–Menten–Henri system in dimensional form
[18]. In a typical experimental setting, C0 = P0 = 0 so that ST = S0. We
follow this setup here and consider a problem with five parameters, the three
kinetic constants k±1 and k2 and the total concentrations ST and ET . To
further emulate an experimental setting, we set our observable to be the
product concentration, whose time course is determined by the IVP

P ′ = k2C, subject to P0 = 0. (16)

Equations (15) and (16) represent the original form of the Michaelis–Menten–
Henri system.
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6.1. System dynamics

The multiscale dynamics of this system has been analyzed in a series of
publications, among which the landmark articles [13, 18]. The salient fea-
tures of these two articles is the system nondimensionalizations they propose
and, in particular, the small parameter they use to define the singularly per-
turbed regime. Specifically, the authors of [13] work with the small parameter
ε̄ = ET/ST , whereas those of [18] use ε = ET/(ST + KM); the asymptotic
regime is defined as ε̄� 1 and ε� 1, respectively.

To nondimensionalize the system, we draw inspiration from [18] and define
the new parameter set

(σ,KM , VM , κ, ε) =

(
ST
KM

,
k−1 + k2

k1

, k2ET ,
k−1

k2

,
ET

ST +KM

)
. (17)

Here, ST and KM have units of concentration, VM of reaction speed and κ
and ε are non-dimensional. The inverse of this bijection is

ST = σKM , ET = εKM(σ + 1), (k−1, k1, k2) =
VM

εKM(σ + 1)

(
κ,
κ+ 1

KM

, 1

)
.

Additionally, we nondimensionalize time and reactant concentrations through

τ =
t

ts
and (s, c, p) =

(
S

ST
,
C

C̄
,
P

ST

)
,

where the slow timescale tS and complex concentration estimate C̄ are [18]

ts =
ST +KM

VM
and C̄ =

ETST
ST +KM

.

The new system of ODEs becomes

ṡ = (κ+ 1)

[
− (1 + σ) s+ σcs+

κ

κ+ 1
c

]
,

εċ = (κ+ 1) [ (1 + σ) s− σcs− c] ,
(18)

with initial conditions s0 = 1 and c0 = 0. The observable p evolves under

ṗ = c, subject to p0 = 0. (19)

This is the rescaled form of the system, studied in the main text.
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7. The catalyst pellet system

When a heterogeneous chemical reaction takes place in a porous catalyst
pellet, transport of the reactants to the pellet surface and then through
its pores to the catalyst sites plays an important role in determining the
overall reaction rate. The Thiele modulus (Φ) is a dimensionless parameter
determining the relative strengths of diffusive transport and reaction. For a
spherical particle, Φ can be defined as

Φ = R
√
k/D, (20)

with R the particle radius, k the first order reaction rate constant and D the
effective diffusivity.

The overall performance of the catalyst pellet is traditionally expressed
in terms of an effectiveness factor (η), which compares the average reaction
rate throughout the catalyst to the reaction rate had the conditions (concen-
tration, temperature) in it been uniformly the same as on its surface. For
an isothermal reaction, η ↓ 0 in the presence of severe diffusion limitations
(Φ � 1), while η ↑ 1 in the absence of transport limitations (Φ ≈ 1 and
the conditions inside the pellet match those on its surface). For a spherical
particle with first-order kinetics,

η =
3

Φ2

δC

δr

∣∣∣∣
r=R

. (21)

In the non-isothermal case where one allows for heat generation during
the reaction, however, one may find that η exceeds unity. This is so because
the hot pellet interior accelerates the reaction, relative to the cool region
close to its surface. In this case, both mass and heat transfer play a role.
Writing H for the molar heat of reaction, K for the heat conductivity, T0

for the boundary temperature, and C0 for the boundary concentration, one
can define the parameter β = C0HR/(KT0) characterizing non-isothermal
behavior. In the isothermal case (β = 0), η is in an one-to-one correspondence
with Φ. In non-isothermal cases (β 6= 0), the relation between Φ and η
loses injectivity and a single η−value can correspond to various Φ−values.
Another significant parameter when considering non-isothermal reactions is
γ = Q/(RT0), with Q the activation energy of the reaction. This parameter
can be interpreted as the sensitivity of the reaction to temperature changes,
since its logarithm corresponds to the Arrhenius expression of the reaction
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rate outside the pellet. For our discussion in the main text, we fixed the
γ−value to 20 and varied the value of β to produce different model response
curves. For detailed information regarding the numerical solution of η vs. Φ
curves in non-isothermal catalysis, we refer the interested reader to [25].

With this data in hand, we can proceed to apply DMAPS as usual. To
use “offset” data (ηi+∆, cf. main text) as part of our model response, we
generated the (Φ, η)−curve using a regular grid of step ∆ in log Φ. That way,
each model response ηi corresponding to the grid point log Φi could easily be
combined with ηi+∆ corresponding to the adjacent grid point log Φi + ∆.

8. Characterizing the “good parameter set”

Traditionally, parameter sensitivities have been analyzed by inspecting
the eigenvalues of the Hessian of some objective function near a reported
minimum. Vanishingly small eigenvalues suggest directions in parameter
space in which the goodness of fit remains nearly invariant. Such directions
provide us with a sense of the dimensionality of the “good parameter set”
(or set of good fits) – the set of parameter values leading to an objective
function value practically indistinguishable from its value at the reported
minimum. For the ABC model presented in the main text, this “good set”
is visibly 2D (see Fig. 6 of the manuscript), and one might be tempted to
exploit this feature to determine the number of effective parameters (see also
the recent work of [26] for a connection to ideas from statistical mechanics).
Specifically, the ABC model has a total of three parameters and two neutral
directions parameterizing the “good set,” which suggests the existence of a
single effective parameter. This is confirmed by our output-informed kernel
DMAPS computations for that model in the main text.

This short section uses a somewhat contrived example to showcase a
caveat: that nonlinearity in the way the inputs enter the model may obscure
the true dimensionality of the “good set” and, through this, lead to an er-
roneous estimation of the degree of model sloppiness. We first introduce an
ODE model followed by a transformation of the states which in total contains
four parameters (λ, ε, a, b). The two-dimensional ODE system

X ′ = −λX,
εY ′ = −Y, (22)
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is followed by the transformation (X, Y ) 7→ (x, y) given by

x = X + by2,

y = Y + ax2.
(23)

where λ and a control slow contraction rate and slow manifold topology
respectively (these two are effective parameters). The parameter ε dictates
the fast transient and b controls fast fiber shape (ε and b are here sloppy
parameters). When ε � λ, Eq. (22) becomes singularly perturbed and Y
quickly decays to zero. The transformation in (23) serves to create nonlinear
fast and slow manifolds in the (x, y) plane, x = X(t0) + by2 and y = ax2,
respectively. To make our point, we now transform the parameters a and λ
to two other parameters u2, w2 that are invertible functions of them. This
is accomplished through two iterations of the Hénon map (for A = 1.4 and
B = 0.3) (that provide the nonlinear invertible transformation) as

u2 = 1− A(1− Aλ2 + a)2 +B(1− Aλ2 + a),

w2 = b(1− Aλ2 + a).
(24)

The new model (which can be thought of as an observation of (22) through a
“curved mirror”) has two parameters p = (u2, w2), which are in an one–to–
one correspondence with the original parameters (λ, a). We now fix a base
value of p∗ = (0.7956, 1.8), corresponding to (λ∗, a∗) = (1, 1) and compute
the model response

f(p) =


x(t0|p) y(t0|p)
x(t1|p) y(t1|p)

...
...

x(tN |p) y(tN |p).

 (25)

Here, we fixed ε = 10−3, b = 10−2 and t1, . . . , tN to be N = 10 evenly spaced
points in [0.1, 1.0]. To investigate which parameter values p generate points
on the model manifold close to f∗ = f(p∗), we first sampled p uniformly on
the rectangle u2 ∈ (−2, 30), w2 ∈ (−1.5, 0.7); we then used each point as an
initial value for a least squares minimization routine with objective function

c(p) = ‖f(p)− f∗‖2
F ; (26)

here, ‖ · ‖F denotes the Frobenius norm. Since noise is not part of our
setup, our objective function has a unique minimum at p∗ making it zero;
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Figure 6: (a) Sample of the transformed (u2, w2) parameter space colored by c. Significant
deviations from the expected ellipsoidal “good” parameter set are observed. (b) Original
(a, λ) parameter space, in which the expected ellipse is recovered. Both figures share the
color bar on the right.

to reflect that, we terminate our iterative minimization routine at any point
θ = pi satisfying c(θ) < 0.8. Since different initializations for our gradient
descent algorithm terminate at different points, our procedure samples the
“good set” of parameter settings giving predictions close to f∗. This set of
parameter combinations is shown in Fig. 6 (a), with each point pi colored by
its objective function value c(θ). Model nonlinearity is evident in that the
set deviates markedly from the expected elliptical shape close to an isolated
minimum. Transforming this set back to the original parameters (a, λ), as
in Fig. 6 (b), we recover the typical, elliptical structure expected around the
perfect fit.

A standard DMAPS analysis of that “good set” with the input-only in-
formed kernel, i.e with the Euclidean norm in p (i.e. in u2, w2), suggests an
apparent dimensionality of one. The first DMAPS eigenvector parameterizes
the long, curved, thin direction “along” the cloud, see Fig. 7(a), while the
second, thin dimension is “lost” in subsequent, higher-order eigenvectors.

As discussed in Eq. 8 of the main text, applying a more informative kernel,
that includes both input and outputs, in our data-driven DMAPS analysis
can give a more informative result. Figure 7 (b) shows the original parameter
space (a, λ) parameterized by the first two non-trivial DMAPS eigenvectors
(φ∗1, φ

∗
2) (top); and the converse (bottom) using the mixed kernel; as we

expected the “good” parameter set now appears visibly two dimensional.
This phenomenon is the result of our (intentionally) poor choice of the new

model parameters (u2, w2). Data-driven approaches, such as DMAPS, can
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Figure 7: (a) Coloring the (u2, w2) plane by φ1 from a DMAPS analysis based solely on
input–only (parameter) informed kernel. The long curve is captured but the thin dimen-
sion (the width) is not resolved (the next thirty eigenvectors did not capture this new
direction!). (b) Original parameters α and λ colored by the mixed, input–output kernel
DMAPS coordinates (φ∗1, φ

∗
2) together with diffusion space colored by the original param-

eters. The two-dimensional effective nature of the “good” input set (and its correlation
with the original inputs (a, λ) is clearly visible.

thus help us reparameterize (i.e. appropriately transform) parameter space
(u2, w2) to a new one (φ∗1, φ

∗
2) that has a much better bi-Lipschitz relation

with the original parameter set (a, λ) better resolving model variability.

9. A quick discussion of Active Subspaces

The Active Subspaces algorithm of P. Constantine and coworkers [23] has
been developed based on the idea of finding the “important directions” in the
space of all inputs of a nonlinear scalar function f : Rm → R, a map from m-
dimensional parameter space to the real line. The aforementioned directions
are assumed to be weighted linear combinations of the input parameters.
These directions are called “active subspaces” and point towards the direction
of most intense change of an “observable.”

1. We consider N sample points in parameter space. For each sample
point xn ∈ Rm, we observe f(xn) and the gradient ∇f(xn).

2. The average of the outer product of the gradient with itself on the
sample data is computed through

Ĉ =
1

M
ΣN
n=1∇f(xn)∇f(xn)T .
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Here, ∇f is seen as an m−dimensional column vector, hence Ĉ is an
m×m matrix.

3. We find the eigendecomposition of Ĉ = Ŵ Λ̂Ŵ T .

4. The observable exhibits the greatest change in the space spanned by
the leading eigenvectors of Ĉ, which are stored column-wise in Ŵ [23].

To illustrate this procedure and its outcome on a simple example, we consider
the map

f : R2 → R given by (x1, x2) 7→ f(x1, x2) = ex
α
1 +x2 . (27)

where α can be fixed at an arbitrary value. Although the parameter space
(x1, x2) is 2-D, the map effectively only depends on the single effective pa-
rameter xα1 +x2. As a result, the parameter space can be re-parameterized by
any one-to-one function of xα1 +x2. To discover active subspaces for (27), we
consider a uniform grid on [−1, 1]× [−1, 1] and evaluate the map f on each
grid point. Since the parameter space is effectively 1-D (composed of level
curves of the effective parameter), the active subspace parameterization is
given by ψ1 = wT1 · [x1, x2]T , at each point. We compute the active subspaces
for α = 1 and α = 5:

• For α = 1: As expected, the effective parameter ψ1 is the linear com-
bination x1 + x2 of the input parameters. As shown in Fig. 8(a), the
observable is in an one-to-one correspondence with ψ1, meaning that
active subspaces recover the effective parameter.

• For α = 5: In this case, the effective parameter is not a linear combi-
nation of input parameters. As shown in Fig. 8(b), the basic algorithm
does not discover the effective one-dimensional (but nonlinear) relation
between the input parameters.

To conclude this discussion and compare methodologies, we applied the
output-only DMAPS algorithm to each of these cases and plotted the ob-
servable against the first non-trivial eigenfunction of the graph Laplacian;
see Fig. 9. Plainly, th DMAPS algorithm captures the effective parameter
both when that is linear and when it is nonlinear in the input parameters.
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Figure 8: The observable f , plotted against the first active subspace coordinate for (a)
α = 1 and (b) α = 5.
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Figure 9: The observable f plotted against the first DMAPS coordinate for (a) α = 1 and
(b) α = 5.

The idea of active subspaces has been employed by Constantine and
coworkers to decompose input space using products of powers of the in-
puts, since these become linear combinations in a logarithmic scale (“ridge
functions” [24]). It will be interesting to explore how more general nonlinear
relations can be used in discovering effective nondimensionalizations.

10. On the origins of sloppiness

We now attempt to generalize the setting presented in Section 1 and ex-
plore the origins of parameter (input) sloppiness. Here also, we consider
multivariable vector functions x(t|p) ∈ RD, where D is arbitrary. The inde-
pendent variables are partitioned in what one might call “bona fide variables”
t = (t1, . . . , tK) ∈ I ⊂ RK and parameters p = (p1, . . . , pM) ∈ Θ ⊂ RM . For
each p ∈ Θ, we term the function χ(p) = x( · |p) ∈ X the full model response
and the function space X containing it the full model space. To know the
mapping χ : Θ → X is to know fully the solution to the problem at hand,
and such knowledge is typically unattainable. As p ranges over Θ, χ traces
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out the full model manifold X = {(p, χ(p))}p∈Θ ⊂ Θ × X. That manifold
is generically M−dimensional and, if x depends on p in a C1 manner, also
continuously differentiable. Here also, as in Section 1, we only monitor one
or more functionals, f1, . . . , fN : X → R. We term each individual fn(χ(p))
a partial observation and the N−tuple

f(p) = [f1(χ(p)), . . . , fN(χ(p))] ∈ RN

the observed model response. Under the action of f , the full model mani-
fold X is projected to the (observed) model manifold M = {(p, f(p))}p∈Θ ⊂
Θ × RN . We will assume f : Θ → f(Θ) to be a homeomorphism, unless ex-
plicitly stated, and the linear map Dpf to have rank M . These assumptions
make f an atlas for M and are satisfied by all models we consider in the
main text, save for the non-invertible model therein.

To discuss sensitivity of the observed model response to parameter vari-
ations, one must assess shifts in that response relative to such variations.
In [20], the authors defined distances on M by omitting the p−component
and working with the projected manifold πM, where (p, f(p))

π7−→ f(p). Dis-
tances were measured using a Riemannian metric induced by a norm in the
carrier space of πM, i.e. RN . Similarly, in this section we work with the
standard Euclidean norm, reserving important questions on weighing and
correlation of partial observations for the future. An infinitesimal displace-
ment dp = (dp1, . . . , dpM)T in Θ yields the infinitesimal displacement dz =
(dz1, . . . , dzN)T = (Dpf) dp ∈ Tp(πM) with length ||dz||2 = (dp)T g dp.
The M ×M positive definite matrix g = (Dpf)T(Dpf) is the metric tensor
for πM for the specific atlas f . Although the positive definiteness of g makes
the system responsive to all parameter variations, the observed model re-
sponse locally around some point p ∈ Θ may vary greatly with the direction
of dp and be disproportionately small along certain directions. This is the
phenomenon termed sloppiness, and it manifests itself in the spectrum of the
metric. Small eigenvalues yield small observed responses, with sloppy direc-
tions in Θ being the pull-backs under µ of the associated eigendirections in
Tp(πM).

In terms of the full model manifold, parameter values are first mapped
to X ⊂ Θ × X equipped with the Riemannian metric h = (Dpχ)T(Dpχ),
then projected to the model manifold M ⊂ RN , equipped with the metric
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g = (Dpf)T(Dpf). We can quantify the relation between these two metrics
and examine how that projection can generate non-identifiability as well as
sloppiness. For clarity of presentation, we restrict our attention to linear
functionals f1, . . . , fN on a Hilbert space X equipped with inner product
〈·, ·〉 and induced norm || · ||. In that setting, X is isomorphic to its dual X∗

and hence fn = 〈en, ·〉, for some en ∈ X and all n = 1, . . . , N . Therefore,
f(p) = [〈e1, χ(p)〉, . . . , 〈eN , χ(p)〉]T, with push-forward

Dpf =

 〈e1, ∂p1χ〉 . . . 〈e1, ∂pNχ〉
...

. . .
...

〈eN , ∂p1χ〉 . . . 〈eN , ∂pNχ〉

 =

 〈e1, ·〉
...

〈eN , ·〉

Dpχ.

Based on this, the metric on M is written as

g = (Dpf)T(Dpf) = (Dpχ)TF (Dpχ). (28)

The linear operator F : X→ X∗, here, is given for each v ∈ RN by

Fv =
N∑
n=1

〈en, v〉〈en, ·〉 =

[
〈e1, ·〉, . . . , 〈eN , ·〉

]〈e1, v〉
...

〈eN , v〉

 ∈ X∗.

To understand (28) better, we use the isomorphism X∗ ∼= X to interpret
F as a symmetric endomorphism on X. Its spectrum consists of the zero
eigenvalue, linked to the co-dimension N kernel KerF =

⋂N
n=1 e

⊥
n , and of a

nontrivial part linked to the invariant subspace ImF = span(e1, . . . , eN). In
the basis {e1, . . . , eN} for ImF , the restriction F |ImF is represented by the
matrix

G =

 〈e1, e1〉 . . . 〈e1, eN〉
...

...
...

〈eN , e1〉 . . . 〈eN , eN〉

 . (29)

This proves that the nontrivial part of the spectrum consists of the eigenval-
ues of the N × N Gram matrix G. To rewrite (28) using this information,
we decompose the columns of Dpχ along the invariant subspaces KerF and
ImF ,

∂pnχ = Nn + In = Nn + [e1, . . . , eN ]Cn, with Nn ∈ KerF and In ∈ ImF.
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The corresponding matrix decomposition is Dpχ = N + [e1, . . . , eN ]C, with
Cmn the component of ∂pnχ along em, and thus

g = CTG2C. (30)

This equation expresses the metric onM in terms of a Gram matrix, deter-
mined by the functionals f1, . . . , fN , and of a matrix quantifying the projec-
tion of Tχ(p)X on the combined range of those functionals along their joint
kernel.

Equation (30) shows that an ill-conditioned G or C leads to sloppiness,
manifested in disparities within σ(g). An ill-conditioned matrix G points to
functionals that are either badly scaled or nearly dependent. This was the
case in [22], where sloppiness was traced to a Vandermonde matrix specific
to Taylor polynomials. Replacing those polynomials by an orthonormal set
would have sufficed to remove sloppiness. An ill-conditioned matrix C, in-
stead, is due to directions in TpX that align well with

⋂N
n=1 Kerfn. In that

case, parameter variations can generate negligible model responses on πM,
although the observation functionals are proportionate and the full model re-
sponse on X appreciable. This is the case with multiscale systems, in which
certain parameters combinations affect behavior at unobserved scales (fast
transients).
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